COMPUTING SUBJECT:

TYPE:

IDENTIFICATION:

COPYRIGHT:

LEVEL:

TIME CONSUMPTION:

EXTENT:

OBJECTIVE:

PRECONDITIONS:

COMMANDS:

Restful ASP.Net Core-services
Assignment

RestCustomerService

Michael Claudius & Peter Levinsky
Medium

3-5 hours

60 lines

Restful services based on ASP.Net Core
Exercise RestCalculatorService is a must

Rest service theory. Http-concepts
Computer Networks Ch. 2.2

IDENTIFICATION: RestCustomer /MICL&PELE

Purpose

The purpose of this assignment is to be able to provide and consume restful ASP.Net Core web

services on objects of a specific class.

Precondition

You must have done the RestCalculatorService, as basic information and guidelines are given in this

exercise.

Mission

You are to make and use restful web services based on the ASP.Net Core services by setting up a
server (provider), test the services by use of Fiddler/Postman and create a client (consumer) using the
services provided. On the way you will publish the service to the cloud (Azure) and apply CORS
from Azure. The service supports the classic GET, POST, PUT and DELETE requests. This we shall

do in the following steps:

CoNoO~wWNE

Create a project with auto generated service

Create a model class Customer for customer data

Create a controller CustomerController to provide REST services
Extend CustomerController with a list of customers

Create and provide a controller oriented service in CustomerController
Test the service using Browser/Fiddler/Postman

Create a client/consumer utilizing the service

More services and testing by Fiddler/Postman and client/consumer
Publish to Azure

. Support simple Cross Origin Resource Sharing (CORS) using Azure

. Set up a project for Unit test

. Support dedicated Cross Origin Resource Sharing (CORS) in the project
. Refactor the consumer code

This assignment holds all step 1-10.
In the next assignment, RestCustomerService No. 2, holds steps 11-13.

Domain description

Management and administration of customers utilizing web services for the classic operations:

Create (POST)

Read, i.e. Find one or more. (GET)
Update (PUT)

Delete (DELETE)

Reflecting standard Http requests.

When surfing on the net it is easy to find many descriptions more or less useful, and in more or less
updated versions. Here are some:

Useful links for C#:

Serializable Class
https://msdn.microsoft.com/en-us/library/4abbf6k0(v=vs.110).aspx

CRUD-Operations and routing
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-
routing-in-web-api-2

Building ASP web services

This is for ASP Framework but there are ideas about the programming
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/create-a-
rest-api-with-attribute-routing

Cors — Cross Origin Ressource Sharing
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-
in-web-api (from the middle enable CORS)

https://en.wikipedia.org/wiki/Cross-origin resource sharing

Test
https://code.msdn.microsoft.com/Unit-Testing-with-ASPNET-
1374bc11/sourcecode?fileld=179451&pathld=1993051352

https://docs.microsoft.com/en-us/aspnet/web-api/overview/testing-and-debugging/unit-testing-with-
aspnet-web-api

https://msdn.microsoft.com/en-us/library/4abbf6k0(v=vs.110).aspx
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/create-a-rest-api-with-attribute-routing
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/create-a-rest-api-with-attribute-routing
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://code.msdn.microsoft.com/Unit-Testing-with-ASPNET-1374bc11/sourcecode?fileId=179451&pathId=1993051352
https://code.msdn.microsoft.com/Unit-Testing-with-ASPNET-1374bc11/sourcecode?fileId=179451&pathId=1993051352
https://docs.microsoft.com/en-us/aspnet/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api

Assignment 1: Restful ASP.Net Core-service provider

You are to make a Rest Service provider RestCustomerService.

Start Visual Studio:File -> New -> Project.

Choose: Web -> ASP.NET Core Web Application (not .Net Framework).
Browse to a convenient location and give the name RestCustomerService.

Create a new project

Clear all

Recent project templates c= - Alplatforms - Web -

€D ASP.NET Core Web Application s ﬂ% (G a2 o i
DV Project templates for creating ASP.NET Core web apps and web APls for Windows, Linux and mac0S using .NET Core or NET
Framework. Create web apps with Razor Pages, MVC, or Single Page Apps

(SPA) using Angular, React, or React + Redux

B Console App (NETFramework] =
[Linux mac0S Windows Cloud Service Web
& Android Wear App (Xarmarin) =5 Blazor App
Project templates for creating Blazor apps that run on the server in an ASP.NET Care app or in the browser on WebAssembly
= Mobile App (Xamarin.Forms) s (wasm). These templates can be used to build web apps with rich dynamic user interfaces (Uls).

€& Llinx mac0S Windows Cloud Web

9RPC Senvice
A project template for creating a gRPC ASP.NET Core service using .NET Core.

gRPC
€& lnu macds Windows Cloud Sevice Web

D!@ Razor Class Library
el project template for creating a Razor class library.
[Linux macOs Windows Library Web
cj NUnit Test Project (NET Core)
@ 4 project thet contains NUnit tests tht con run on NET Core an Windows, Linusx and MacOS,
(e Linux mac0s Windows Desktop Test Web

;1 ASP.NET Web Application (NET Framework)
B project templates for resting 2

P.NET applications, You can create ASP.NET Web Forms, MVC, or W

b API applications and

Back

ﬂ AP Type here to search

New Project ? X

o~
b Recent Sort by: | Default M Search (Ctrl+E) P
- x
s
Configu
Create a new ASP.NET Core web application
ASP.NET Core
Project name ‘.NETCWE -| ASP.NET Core 3.1 -
WebApplication3 =
q I
. m mpty Authentication
An empty project template for creating an ASP.NET Core application. This ternplste does not have any content in No Authentication
C:\Users\zk222\sourd it Change
API
Solution name @ E

A project template for creating an ASP.NET Core application with an example Controller for a RESTul HTTP service.

WebApplication3 This template can also be used for ASP.NET Core MVC Views and Controllers. Advanced

Web Application Configure for HTTPS

[7] Piace selution and
A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content. [] Enable Docker Support

(Requires Docker Deskiop)
Web Application (Model-View-Controller)

&

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
Controllers. This template can also be used for RESTul HTTP services.

Fy Angutar

A project template for creating an ASP.NET Core application with Angular

React.js Author: Microsoft
Source: Templates 3.1.9

Get additional project templates

Back

ﬂ L Type here to search

Choose the API.

DON’T tick Docker support.

Tick HTTPS if you intend to use GoogleChrome or MicrosoftEdge as browser. And Fiddler as a
tester-client. This has been tested by me (Michael Claudius) and it all works fine.

Don’t tick HTTPS, if you intend to use Firefox as browser.Also if you intend to use Postman, it
could (nit sure) have problems using https. But then of course https will NOT be supported later on.

Now you have to wait a while...
Execute the Application by viewing it in a local Browser. This will start the Azure emulator.
As you can see it takes the predefined URL:

http://localhost:49972/weatherforecast

The port number (49972) will be different on your computer.

Now we are ready to extend the project with first a model class then a controller class.

Assignment 2: Model class Customer

We need a class, Customer, for customer objects. Therefore, to the project add (right click project,
choose Add -> Folder) a folder named “Model” and in this folder add a public class, “Customer”,
with the data fields:

ID, unique identifier
FirstName,

LastName,

Year, year of registration

with get/set method for all the fields; i.e. they are properties.
Make the constructors:

Customer(int id, string first, string last, int year)
Intializing all the data fields

Customer() {}
/lempty constructor needed for JSON transfer. Serializable objects.

Assignment 3: REST API operation by creating a controller
You are to create a controller where the operation contracts must be defined as REST API routes
and methods similar to CalculatorController.

In the solution in the controller folder, add (i.e. Right click) a new controller named
“CustomerController”.
Choose ‘Web API Controller with read/write actions’.

http://localhost:49972/weatherforecast

Add Scaffold X

4 Installed
b Common . o
MVC Controller - Empty API Controller with read/write actions
Controller L TERRemmTErEmRR by Microso ft

‘I: MVC Controller with read/write actions An AP controller with REST actions to

create, read, update, delete, and list entities.

F a MVC Controller with views, using Entity Framewaork
i ’ Id: ApiContrallerWithActionsScsfolder

‘z API Controller - Empty

% AP| Controller with read/write actions

‘: AP Controller with actions, using Entity Framework

Click Add and you can see the new controller.
Now we are ready to create customers and add services on them.

Assignment 4: Extend CustomerController with a list of customers
In CustomerController declare a static list holding three customers:

private static List<Customer> cList = new List<Customer>()

How to add customers so the list is always initialized with three customers?
Maybe you also like this:

public static int nextId = 0;

But what should that be used for...?

Assignment 5: Define the GET service GetCustomers
In CustomerController modify the first Get method (it’s the one returning values) to support a Rest
API GET request, that returns a list of all customers:

// GET: Customer
[HttpGet]
public List<Customer> Get() // or public IEnumerable<string> Get()
{

}

return <your Llist> //cList

And implement the method to let it return your customer-list.
What is the full route to the Get operation?
Why did we choose to change HttpGet?

Assignment 6: Testing application in Browser/ and Fiddler/Postman
Execute the Application by viewing it in a local Browser. This will start the Azure emulator.
From the browser call the customer:

http://localhost:44343/customer
http://localhost:44343/customer/1

All fine?!.
Not yet but we are close!!

Try also to invoke the method from Fiddler/Postman.

Before adding more services, you will write a consumer program.

Assignment 7: Consumer: RestCustomerConsumer

Create a simple Console Application project “RestCustomerConsumer”. Add a Customer class to

the project, a class similar to the Customer class you used in the provider.
In order to serialize/deserialize objects, you must from NuGet install the package Newtonsoft.json.

Browse Installed Updates Consolidate

json.net x~ & Include prerelease

'e Newtonsoft.Json.Net20.dll by wx1983@gmail.com, 9.1K downloads
NewtonsoftJson.Net20.dll

Newtonsoft.Json & by James Newton-King, 146M downloads
O Json.NET is a popular high-performance JSON framework for .NET

Now to consume the “Get” service, you in Program class (i.e. Not inside main) make a very special
method:

public static async Task<IList<Customer>> GetCustomersAsync()

{
using (HttpClient client = new HttpClient())
{
string content = await client.GetStringAsync(Customersuri);
IList<Customer> cList = JsonConvert.DeserializeObject<IList<Customer>>(content);
return clList;
}
}

Where the CustomerUri is the URI pointing to your service and method (customer).

http://localhost:44343/customer
http://localhost:44343/customer/1

a. In main show how to use the method and print the list of customers.
Execute the program

b. Carefully explain the code line-by-line what goes on.

Assignment 8: More services and usage by client/consumer
You must now extend the service (i.e. your controller) with more methods.
In CustomerController define more operations handling:

e Customer Get(int id)
Return the customer information with the specified id.

o DeleteCustomer(int id)
Delete (DELETE) the customer with the specified id.

e InsertCustomer(Customer c)
Insert (POST) the customer object in the list

e UpdateCustomer(int id, Customer c)
Update (PUT) a specified customer. Retrieves a specified customer, replace the old
customer information/object in the list, with new customer information/object, c.

a. For each method, show how to use it from Fiddler/Postman.

b. For each method, show how to use it in the consumer RestCustomerClient.
Rather similar to the Async-methods (get and post) you already made in this exercise and in
RestCalculatorService

Notice: Remember for each method you must carefully think about:

- Which HTTP method/verb to use?

- What should the URI (route) look like? Any parameters to the URI, like {id4}?

- Do you want to specify the route explicitly like: [Route("customer/{id:int}")]
for each method

- Return type: true/false, customer object, id etc..

And write down your arguments.

Assignment 9: Publish in Azure

a. Publish your service in Microsoft Azure.
b. Use a browser to show the APl and the methods.

c. Use Postman or Fiddler to show requests and responses.

d. Show how to use the Azure service instead of the local URI in your consumer program.

Assignment 10: Simple support of Cross Origin Resource Sharing (CORS) in Azure

You must now change the Azure settings to apply CORS to your Rest Service, i.e. your Rest Service
(API) can be consumed in scripting frontend pages, like Javascript/Typescript based applications.

a. Login to your Azure portal and click on your WebApp project (miclRestCustomerCore).
Scroll down on the left panel and find the CORS button:

— O X
e A\ hitps://portal azure.com/#@michaelclaudiushotmail 758.onmicrosoft.com/ ~ @ €& | Search... P~ ¢ 507 (€
/A Dashboard - Microsoft Azure L]
File Edit View Favourites Tools Help
. s 7) »
1= g Live DR1 TV DR | #|TastSelv - Ret arsopgarelsen Ml Erhverv % v B - [o v page~ Safety v Toolsv @~
i Search resources, services, and docs 1S ? © michaelclaudius@hot.. .
Microsoft Azure 42 b & Q b © DEFAULT DIRECTORY 0
Home > App Services > miclRestCustomerCore
Create a resource miclRestCustomerCore
App Service
All services « 7 _
) [/ Browse W Stop QU Restart [Delete ¥ Get publish prg
* FAVORITES
v
4 Click here to access Application Insights for monitoring and profiling for your ASP.NET
1= Dashboard + Easy APIs A
. Resource group (change) URL
HH - .. Data connections
£22 All resources E miclRessource https://miclrg
8/ Resource groups API Status App Service
Running ServicePland
& App services AP definition Location FTP/deploy
= SOL databases C:;] CORS South Central US No FTP/depl
N Subscription (change) FTP hostnam,
&5 Azure Cosmos DB Monitoring Microsoft Imagine ftp://waws-p
B virtual machines Subscription ID FTPS hostna
- ' Alerts (Classic) ccecdd11-9442-4302-a83-bcb35d1d26¢8 ftps://waws-[
& Load balancers i i
Diagnostics logs Vv Tags (change)
- Click here ta add taa
St it
B storage accounts < >

b. Click on the green CORS button and the pop-up window looks like this:

- O X
e A\ https://portal.azure.com/#@michaelclaudiushotmail 758.onmicrosoft.com/i = & & Search.. 0~ 3, 0y (&
/A CORS - Microsoft Azure L1
File Edit View Favourites Tools Help
1% g Live DR1 TV DR | ¢ TastSelv - Ret &rsopgerelsen e Erhvery i v B ~ (5 #m v page ¥ Safety ¥ Tools ™ ‘-9-" >

A - o i ius@hot.. []
L Search resources, services, and docs £0, = michaelclaudius@
Microsoft Azure - & s DEFAULT DIRECTORY Q)

Home > App Services > miclRestCustomerCore - CORS

-,

Create a resource miclRestCustomerCore - CORS
App Service

All services «

J FAVORITES

I= Dashboard Al Easy APIs ~ -y,

I . CORS

58 All resources ! Data connections

w#/ Resource groups] L. . i .)
Cross-0Origin Resource Sharing (CORS) allows JavaScript code running in a browser

on an external host to interact with your backend. Specify the origins that should

be allowed to make cross-origin calls (for example: http://example.com:12345). To

-
=t SQL databases =) CORS allow all, use "*" and remove all other origins from the list. Slashes are not allowed
as part of domain or after TLD. Learn more

& App Services API definition

&F Azure Cosmos DB
Monitoring

! Virtual machines

v Alerts (Classic) ALLOWED ORIGINS

4‘ Load balancers X .
=4 Diagnostics logs

Your web-service should be made available for any external host.
So to allow Javascript code -running in a browser on any external host- to access the backend with
the rest web service place a “*” in the Text field below “ALLOWED ORIGINS”.

Then click on “Save”.

CONGRATULATIONS YOU NOW HAVE A NICE RESTFUL WEB SERVICE

Now you and others can later utilize your rest service from Typescript/Javascript etc..
In the next assignment we will detail the CORS possibility and unit testing ©

Appendix A: Running from Fiddler/Postman

This a is an example for using a service add on two integers. It will be similar for services on
customers.

Try to invoke the method from Fiddler/Postman
Be aware that you must:
a. Click on Composer
b. Choose POST
c. Define the Content-Type: application/json
d. Request body must hold the Customer as a Json-string

It will look something like this:

© Progress Telerik Fiddler Web Debugger
File Edit Rules Tools View Help GET/book £ GeoEdge

A The system proxy was changed. Click to reenable capturing.
) ¥y Replay X - b Go | ¥ Stream [{ifi Decode = Keep: All sessions ~ € Any Process 4 Find [l Save I8 (3) @ Browse - <k Clear Cache
Result Proto Host URL”™ [l Log [Fiters = Timelne
7 @ statistics & Inspectors # AutoResponder # Composer i3y FiddlerScript

Use this page to compase a Request. You can done a prior request by dragging and dropping a session from |ESSSN
the Web Sessions list.

Parsed Raw Soatchpad Options

%8 WinConfig

POST v | | https: /focalhast: 44343/apifcalaulator fadd v| HTTP/1.1 | ELogRequests
User-Agent: Fiddler a] oy "
Host: locahost:44343 localhost: 44387/
Content-Type: application/json| B localhost: 44337
Content-Length: 14 B localhost: 44387);
localhost: 44387/
localhost: 44387/
equest Bod) Upload file.. & localhost:44387)
{"A™:27,"8":4} & localhost: 44387
2 localhost: 44387/
localhost: 44387/
localhost: 44387/
& micrestcalaulator
B midrestcaladator
% midrestcalaulator
- v micrestcalaulator ,
< > . . .

< >
Al Processes 1/199 http://mickestcustomercore.azurewebsites.net/apy/ customer

v

POODDEDDBE

Click on Execute and hopefully you get the sum.

